
UNCLASSIFIED

AD. 400 284

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

0

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formlated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



0 PAUL WEIDLINGER, Consulting Engineer

770 Lexington Avenue, New York 21, New York

FORCED VIBRATIONS OF AN ELASTIC CIRCULAR

CYLINDRICAL BODY OF FINITE LENGTH

SUBMERGED IN AN ACOUSTIC FLUID

PART I1-COMPIJTATIONAL PROCEDURES AND NUMERICAL EXAMPLE

by

MELVIN L. BARON and ALVA T. MATTHEWS

Office of Naval Research

Project NR 064-464

Contract Nonr 3454(00)FBM

Technical Report No. 2

January 1963



!

FORCED VIBRATIONS OF AN ELASTIC CIRCULAR CYLINBRICAL BODY OF FINITE LIMTM

BUBMEROED IN AN ACOUSTIC FLUID,

Part 11 - Computational Procedures and Numerical Example.

TABLE OF CONTENTS.

List of Symbols .................. . ...... . 1

Introduction ........ . ..a. ..o. ... ... . .e

I1 Computational Procedures, n 0, . .. .. ........ 9

III Computational Procedures and Numerical Examplep n - 0 . . . . 17

a) Computation of the Real and Imaginary Portions of the

Coefficients oJI3 1  •oji ' 7 oji * . . e 20

b) Determination of the Set of Simultaneous Linear

Equations on the Source Strengths 0ot 0 8O0 and C0 t . 29

a) Solution of the Set of Simultaneous Linear Equations

on the Source Strengths& o, #o 0 , and C0 1  . ..... 32

d) Evaluation of the Fluid Pressure Field.o * oo... 39

IV Discussion and Conclusions. 0. g . e g ... ' .. .*7

Appendix A - Evaluation of the Real and Imi•;inary Portions of the

Coefficients o 'j 0 'i 7i and their Spa"e
Der ivatives • , ,.. e e • •59

Appeadix B- Diap'atlo Susry of Couutations. . . . . , 67



S~Ole

LIST Of SYNDOLBC

,,r,*3 - Cylindrical coordinates locating source points#

mee Fig. (A-i).

1•. - Cylindrical coordinates locating field point#

see Fig. (A-1).

uPvv Longitudinal, tangential and radial displacements

of the cylindrical shell.

a - Radius of cylinder.

S- Radius of small circle approximation.

C - Source strength coefficient per unit of circuumferentisl

length for acoustic fluid (in2/sec.).

c- Velocity of dilatational vaves in elastic cylinder.

02 - Velocity of shear wayes in elastic cylinder.

a - Velocity of sound in vater.

GN#L - Source strength coefficients per unit of circum-

ferential length for elastic solid (in ).

I- Source band index.

J - Field point index.

k -•• Coefficient e evaluated for a a cl , c2 p a as

I, L f Indicated in text; I is non-dimensional form .

L - Length of cylinder.

N - Number of bands into which cylinder is divided.

a Number of circumferential waves in the cylinder

displacements.

Mdltlmml symbols wae defined as they occur in the text.
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. Pressure in fluid (lb/in).

P - Expansion coefficient of externally applied normal

traction to cylinder (lb/in 2).

R - Distance between field point and source point,

R - see Eq. (111-16).

R- Distance between field point and origin.

iP 8 - Contribution of small circle of distributed sources,

see Appendix C of Reference (1].

t - Time.

X - Computational variable.

S, Onjip - Integral coefficients of source strengths.

I., M - Elasticity constants of cylinder.

* - Potential function associated with velocities of

acoustic fluid.

tv * , - Potential functions associated with displacements of

elastic cylinder.

- Angle between field and source points, see Fig. (A-1).

Of - Mass density of fluid.

P, p - Non-dimensional variables in radial direction.

to I - Non-dimensional variables in & direction.

err D D0 a

Ore 0 er P 9 Cylinder stresses.

5 - Angle locating small circle of distributed sources,

see Fig. (C-l).
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1requency of vibration.

S Blope of % P see ig. (5).

NOT•I r or s appearing as a superscript for the coefficients Snj,, P Anl a 'fal

denotes differentiation vith respect to the particular variable used.

Dots indicate differentiation vith respect to time.
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fI INTRODUCTION.

The theoretical work and analytical procedures leading to the evaluation

of the pressure and velocity fields produced in an acoustic fluid by the forced

vibrations of an elastic circular cylindrical body of finite length which is

1)submerged in the fluid have been presented in Reference [1] . The application

of the theory to problems of practical interest is discussed in the present

report and numerical results are presented for a sample axi-symmetrical problem,

I.e. a case in which the cylinder excitation is independent of 8 and the response

is given by the n a 0 component only. For convenience, specific formulas in

computational fcrm are given and the major computations are summarized by flow

charts. In the sections which follow, it is assumed that the reader is familiar

with the material contained in [1] and that all unprefixed formula numbers 2)

and section designations refer to the material in that report.

A potential theory approacii was used in [1 to evaluate the pressure and

velocity fields in the fluid due to the time-harmonic excitation of a submerged

cylindrical body of finite length. The stresses and velocities in the elastic

cylinder were expressed in terms of three displacement potential functions, each

of which satisfies the wave equation. Similarly, the corresponding fluid quanti-

ties were expressed in terms of a single fluid velocity potential. Each of the

four potential functions were considered to be caused by a group of simple sources

of unknown strength which were distributed over the boundaries of the elastic body

and the fluid surface at the cylinder-fluid interface. A finite difference approach

1) "Forced Vibrations of an Elastic Circular Cylindrical Body of Finite Length

Submerged in an Acoustic Fluid", by M.L. Baron, A.T. Matthews and H.H. Bleich#
Paul Weidlinger, Consulting Engineer, Office of Navel Research Project
2) O064-4614, Contract 31 51 (OO)FBM, Technical Report No. 1, June 1962.

2) The numbering of formulas in this report will be prefixed by the section uaboe

I 8
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van used in which the boundary of the fluid-cylinder interface was divided into

a series of bands. On each band, the unknown source streneths were considered to

be constant. Conditions on the stresses and velocities at the fluid-elastic body

interface gave rise to a system of simultaneous linear algebraic equations on the

source strengths. The coefficients in these equations are definite integrals

which are evaluated numerically by suitable quadrature formulas for a given

geometry and forcing frequency.

In order to solve the coupled forced vibrations problem for arbitrary

excitations, the time-harmonic exciting forces were expanded into a Fourier series

in 0 around the circumference of the cylinder. In this manner, each term corres-

ponding to n, the number of circumferential waves in the particular component,

could be treated separately.

The solution of these problems inherently involves a major computational

effort directed towards the evaluation of large systems of linear simultaneous

algebraic equations on the source st-ength coefficients. If the cylinder-fluid

interface is divided into N bands, sets of 8N (n # o) and 6N (n - 0) simultaneous

equations are obtained. It will be shown that in each casep the computations can

be reduced to the evaluation of a number of systems of 2N equations. For the

application of the theory to practical problems in which as many as 50 or more

bands might be considered# large electronic computers capable of solving systems

of one to two hundred linear equations would be required.

Section II of this report gives the procedures and detailed formulas for the

evaluation of the n 0 0 response components Section III gives similar Information

for the axi-symetrical case, n - O, and includes an illustrative numerical example
L i

for a case with the parameter ratios h 2 and M - "2.01.
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rIt is felt that the present theory may find useful applications in evaluating

the response in a fluid due to the harmonic excitation of large transducers. In

addition# current york on the extension of this approach to the case of thick

valled elastic shells submerged in an acoustic fluid, in under vay.

I
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II COM.PUTATIONAL PROCEDURES, n o 0.

This section describes the computational procedures for the evaluation of

the source strength coefficients on the cylinder-fluid interface and the sub-

sequent evaluation of the pressure and velocity fields in the acoustic fluid.

The formulas on the real and imaginary parts of the source strength coefficients

are presented in a form particularly suitable for computations. The computational

procedure is conveniently divided into three major portions 3) : a) Evaluation

of the coefficients ,nji p nji and Ynji and their space derivatives, using

Eqs. (29), (30) and Eqs. (45)-(52); b) Solution of Eqs. (80)-(87) for the

source strength coefficients Gn, p Hni , Lni and Cni ; and c) Evaluation of

the pressure and/or the velocity field in the fluid, using Eqs. (67)-(69) and

Eqs. (89)-(89a).

For a particular set of input parameters, i.e. the cylinder geometryj the

elastic constants of the cylinder material; the fluid constants; and the space

distribution of the time-harmonic excitation, the cylindrical shell is divided

into a number N af subdivisions and the computations are started. The number N

of bands on the shell-fluid interface whicn are chosen for any particular problem

will depend essentially on the complexity of the applied ,excitation and the accurac3

required in the results.

The evaluation of the coefficients mnji ' 7',, and their space deri-

vatives have been described in detail for the n - 0 case in Section (IV) of

Reference (1] and no further amplification is required here. The computational

formulas for the real and imaginary parts of these coefficients for n p 0 are

given in Appendix A of this paper for the two casesp i - 3 and i p* J.

l3) See Reference (1], Section IV, Pg. 37 ff.I
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The second major computational effort is the evaluation of the complex

source strengths %ni 0 Hni p Lni and Cni - With four such complex unknown

coefficients for each band N on the cylinder-fluid interface, this leads to a

system of 8N simultaneous linear algebraic equations on the real and imaginary

parts of the source strengths I). For the axisymmetrical case n a 0, all the

coefficients L are zero and a system of 6N equations is obtained.

The source strengths and the coefficients (xnji I Anji I nji and their

space derivatives appearing in Eqs. (80)-(87) are written in terms of their

real and imaginary parts, e.g.

ni ni + i Gni

Oni ani + ni

and the real and imaginary parts of each of Eqs. (80)-(87) are equated, thus

leading to the following set of equations in computational form 5).

Point j on the surface r = a
N

e rr Z 4  
1 0ieni 2 nia2 Lni 3 -%J3 + anik+

i~l

+ Bnia4} - Prr,nj (II-1)

rem

4) Recent developments in the programming of systems of simultaneous linear

algebraic equations with complex unknowns may allow the direct evaluation

of the complex source strengths Gni , Eni , Lni and C without breaking them
into their teal and imaginary parts. This would reduce the problem to the

solution of systems of 4N (n 0 0) and 3N (n a 0) equations respectively.

In the formulas which follow, the subscript nji In each of the d coefficients

will be understood, e.g. d2 a dnj12 etc.



+ ni41 0 (11-2)

roa

Re a rz{w a, - + nlnaa6 , Rna7% + Ln87- 0 (13

Im Or + Bna5 + tnij6 + iaa 6 + .n, + * 0 (3:x.)

1.1 rna

N

a aa

Im IrO xd + ~an 8 + 'nflga + 'niaA,+ Lnill + Enialo} - 0 (11-6)
i-I. r-a

~~~~~j "nL-- i r riji.

+n :nii xi an Cu-?)ni !r n I ,,0W(17

N

Im~~~~~ ~~ X *~e a r: n.r rz

a aa

+ I52



-12-

Point .1 on end surfacee, z - C) and 2 L

N

HeOt.Xa~l %,1,,1 
4il3 Ri a 12 ýni al12 +6ni i 4+ niJ~ a ,: z,nj

iml z-0,L

("1-9)
N

Ia -1- I ii+ Bniall + fl1a~dl 2 + Hni aa 32 - t ni a4 + BnJ 4 } I .=L-0

(11-10)

Re* a z 0 Apply Eq. (11-3) at point.

Lu6 z 0 Apply Eq. (1l-4d) at point.

Re LZid nia.3 -%Jd13 + flnad1 4 - nd 1  7 - + L ni 0njil -0

N

Imaze Lt.dni13 +n±,a13 + niZ14 + Hkiaa1~4  tnio0ji L-in

jul z-0, L

(11-12)

niSn i {a 1~ - 0 n%Jl;i + n~adl 5 + nH l5 + 7 ni w njil

(11-13)

N N
ni ~ niz Cni0

1.I1ý n an - n% JicnI - A ni aa, + iii 1d,5 + 7ý gO, i L
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Expressions for the coefficients k and rare given in Table II-1 and

the expressions for the real and imaginary parts of the coefficients Mnji e

OnJi 0 YnJi and their space derivatives are given in Appendix A of this report

(See Eq. (A-6) - (A-38)].

The application of Eqs. (II-1)-(II-14) at the points on the fluid-cylinder

interface yields the set of BN simultaneous linear equations on the source strengths.

These equations can be solved by either of two approaches:

1) a direct solution of the system of 8N equations on a large electronic computer, or

2) a reduction of the system of 8N equations to a series of 2N systems and their

subsequent solution on an electronic computer. These alternatives vill be

illustrated in detail in Section III of this report in which the illustrative

problem for an axisymmetrical problem, n - O is presented.

Once the source strength coefficients are evaluated, the complex fluid pressure

at a field point j is obtained by direct sub stitution of the source strength coef-

ficients Cni into Eqs. (89)-(89a):

N

PnJ Z f ei [~�~ (Oni'nji + nninnji) n(nni~i j) (II-15)

i-i

The far field pressures in the fluid can be evaluated from the simplified

asymptotic expression, Eq. (89a):
im R

iNn~lw Pf cos nO e'aut sin C

Pn,J"'L 2 ZCni r Jn (k 3 co ) Re

111

(1I-16)



The use of this asymptotic expression greatly simplifies the numerical

computation of 'the far field fluid pressure) since it eliminates the computation

of the ynji integral coefficients for each point along a specific ray in the fluid.

An additional convenience is the fact that once the pressure Pn•J has been evaluated

from Eq. (11-16) for a given point Pj on the ray specified by R0 and j, it can

easily be evaluated for any other point on that ray by chancing the scale factor

iw Ro

c
e , [See Figure 111-3].
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Table I - Evaluation of the Coefficients aind 1 6

M0•2 -rr 2.5rrz24" • anj+ 2•nj• I a'"

a 2p R 5r n

a. - %Ji n.-

2 2

2n n 2n2 -r

a .- -Er.i - •,f. 'uj 7 'n

r ;iIP n

22-a-, -. inI. a +ý2-O

6) The formuals for the coefficients k are obtained by replacing the

single bar values by the corresponding double bar values In each case.
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III COMPUTATIONAL PROCEDURES AND NWSRICAL EXAPLE, n = 0.

For illustrative purposesp the following axisymmetrical problem is presented.

An elastic cylinder of radius a and length L, immersed in an infinite acoustic

fluid, undergoes an electromanetically induced time - harmonic uniform strainp

S"te Wt , in the axial direction, while the radial and circumferential

strains crr and a., are kept equal to zero (Fig. III-la). By superposition, the

pressure field that is produced in the fluid by the straining of the cylinder

will be equivalent to the fluid pressures produced by a set of fictitious surface

tractions which are applied to the solid cylinder in the ratio

aV (a)
-- m - m U

a • + 2p I -v

To illustrate this# consider first, the cylinder under the action of applied

surface tractions ar and a.. (Fig. III-lb). These tractions are chosen so as

to bring the cylinder back to its original unstrained state, i.e.

rr 0
(b)

r - (X + 2p) ae0ea

Finallyp a set of surface tractions which are equal and opposite to those of

Eq. (b) are applied to the cylinder (Fig. III-lc).

The superposition of the three states of stress of Fig. (III-1) shows that

the pressure field Vhich is produced in the fluid by the uniform straining of

the cylinder# g a is equivalent to that which is produced by the

fictitious surface tractions of Fig. (III-lc), namely

Orr • kaot

"a =( a (h + 2p) (oo" • (

I
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For the illustrative problem, the pxr,•:i'tcrs v - * and X% - 103 lb have

been chosen. The problem thus consists of the evaluation of the pressure field

produced in the fluid by the fictitious time hrarmonic tractions .rr - O3 eiat

and oUz " 3(403) e"Lt which are epplied on the boundary surfaces of the elastic

cylinder.

The following parameters are used in the numerical exoaple:

1. Elastic Cylinder 2. Acoustic Fluid

L a 2& vf - 62.5 lb/ft 3

v - t (i.e. ). - 03 a 5000 ft/cce

P- 12(106) lb/in3

S- 0.2833 lb/in3

3. Conputational Geomttry and Pressure Loading (See Fig. 111-2].

(6 side bands on the Purface r - a 1
6 ring bands on the surface z a 0 N a 18 bands.

6 ring b4nds on the surface z a LI.

4. S~unetrical Loading: Prr, oj " (103) e j on the surface r - a

-zzo" 3(103) e 3 on surfaces z . 0 and z - L

With the input values chosen, the propagation velocities of the pressure

and shear waves in the medium become respectively

Cl . + 2. 18,460 ft/sec.

p is

(li . 5 "0,660 ft/sec.

a€3 (fluid)= 5..000 ft/sec.
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The following values of the nondimensional parameters in " were used in the

computations:

il - o.54414
i - 0.9425

i3 a 2.0100

For example, a possible combination of forcing frequency w and cylinder radius

for vhich the numerical results would apply Is w 400 cps and a. - 4 ft.

The cylinder geometry for the choice of N - 18 bands is shown in Fig. (111-2)o

It should be emphasized that this value of N was chosen only as a reasonable com-

putational geometry to illustrate the general method in a sensible manner. It

does not necessarily represent, however, the number of bands which might be

required to obtain physically meaningful results of sufficient accuracy for

application to practical problems. In the latter case, a larger number of

bands N vould generally be required.

I
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a) Computation of the Real and Imaginary Portions of the Coefficients
"%oj± ' ti± ' O and their Space Derivatives.

Some representative numerical values of the coefficients %oji 0 ;oJi 0 their
space derivatives, and the corresponding quantities for 0 oj and 7oji are given

in this section for the illustrative problem. Recalling that each coefficient

is written in terms of a real and imaginary part e.g.

%J± " j i + I 1oi '

analytical expressions for these quantities are given in Appendix B and Appendix C

of Reference (1].

For the cases in which I ea_3, the quantities aoj& p Oojt 0 joji and their

space derivatives are evaluated by numerical integration (Simpson's Rule], using

Eqs. (B-7)-(B-15) of Reference (1). Sharp peaks which occur in the integrands

for values of * < 40c necessitated the use of a variable spacing in the numerical

integration as follows:

*(degrees) &*(degrcs)

0-8 1

8 -20 3

20-140

•o. 60 10

6o - 18o 20

A similar numerical integration was used to evaluate the quantities _oji

;oil 0 ;oil and their derivatives,, qs. (B-16)-(B-24) of Reference (1). For

each quantity, an integration spacing of b - 18 degrees was used.
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For small values of the variable l, computational accuracy required that certain

of the trigonometric expressions appearing In these equations be expanded into

power series so that the leading terms in the integrand could be cancelled

analytically. Expressions for the evaluation of these coefficients are obtained

by setting n w 0 in Eqs. (A-27)-(A-35) of this paper. Equations (A-36)-(A-38)

give the analytical expressions and the range of application for the functions

appearing in the integrands. It should be noted that these ranges will vary

for different problems and that they must be determined separately in each case

by a series of trial integrations using the expressions given in Eqs. (A-36)-(A-38).

For the case i a j in which the field points and the source points are on

the same band special formulas are required for the evaluation of the coefficients

(oil o 7oji and their derivatives because of an infinite discontinuity in

their integrands at the value defined by R - 0. To evaluate these improper (but

convergent) integrals, Eqs. (126)-(127) and Eqs. (C-4)-(C-8) of Reference [1] are

used. The values of the limit F in Eqs. (126)-(127) are evaluated separately by

trial integrations in each case.

Table I1 gives the nondimensional values of the quantities pp ý and (J-1)

for the calculation of the real and imaginary parts of the coefficients aoji '

0,,, and 7oJI and their derivatives in the illustrative problem. While it is

not practical to list the values of these coefficients for all combinations of

I and j, some representative values of these quantities for the two cases J w 7,

i a 6 and j a 3, I a 9 are given In Table III for the convenience of those readers

vho my wish to work through a sanple cmputation. Representative values for the

evaluation of the real portions of the coefficients mo.i and its pertinent deriva-

tives we given in Table IV for the two cases, i -1 5 (top band) and i1 7- ' '

(side band).
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Table III - Representative Values of m oji I 0o,' toY. and their Space

T Derivatives - £ *

CASE I CASE II

J 7, 1- 6 J- 3, 1- 9

Real Portion Imaginary Portion Real Portion Imaginory Portion
(single bar) (double bar) (single bar) (double bar)

-.*4858500 +.2274170 -. 2860010 +.2478359

_LZ -. 7521002 +.003837410 +.2426916.. -. 02119497
r
r +.6153o4o -. 02273441 +.03017070 -. 01027833

.o + 3.91o194 -. 0002299027 +.0o672336 +.0005205666

rzz .6.,6,. + 7.68267 +.001377773 -. 2926517 +.0006060587

,zrr + 4.430315 -. 0002201813

-o-- .... -. 09011387 -. 02437010
rr + 2.074596 -. 02138003 ........

zzz ..... .2010604 +.003792008

0o.i -. 3542777 +.3262738 -. 1225355 +,3522680

z -. 7726809 +.O1807612 +.2918503 -. 09819365

oJlr +.6556329 -. 09997833 +,03667434 -. 04451797rz

•ol +3.9141736 -. 003183777 +.037991412 +.007139976

poji + 47.68707 +.01903262 -. 3136065 +.007779862
q .zrr ,,

, 0 oi.r + 4.533949 -. 002781721 .........

S.. .... . -.09717981 -. 1o25629
r + 2119123 -. 08195736

POI -.---.. .3392487 +.05333224

7. -.I 06006077 +.2492022 +.3011386 +.1673313
05 ,

I Y -. 8155342 +.1005983 +.1056342 -. 14913962

J Ir *.15070 -. 3588395 -.1396592 -. 1677677oil .,______ -

I



I!
-27o

Table IV R Representative Values of aott and Its Space Derivatives - I -

-. 80 -.. 1750

* 6.00 %.a - 2.97

a -. 6800 -. 63758

i -. 3540 -. 2590

am + 3,00 0
•g + 3.00 0

-- r +.3,4636 + 1.8215

ev0 + 1.~4850

,,jz0 0CL

CL+ 59.820 + 11.4o1

.a3 rzi 0 0

&2ez~ 20.582--

Arm ~ 25.404--

,3-zv o.88911

,31zzz -.88911--

CL

.-- 0

a.,,

2-3§rr--0

S". --- - 8.5o
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b) Determination of the Set of Simultaneous Linear Equations on the Source
Strengths Go, 9 Noj and Coi

As for the case n o Op the source strengths and the coefficients %o' # 0oll p

7oJ1 and their space derivatives are written in terms of their real and imaginary

parts, e.g.
Ooi. d o, + I "oi

% ;01 .+1:.

and the real and imaginary parts of Eqs. (1.17)-(122) are equatedp thus leading

to the following set of equations in computational form:

Point j on the surface r - a

N

Re err ~o - Bol + fto1aa2 - H01ad12 + aoJ + d i - ?ro (Ill-1:

,..Orr"-Z{Ioll-+ oiA ." o,"a2-+o,a .-0o,a4 + o,!4} -,=o 0,(11-2'i-1 r-a

N

- @r, -Z{doii oi• d+f•io a ,oaa6 - od - 0o% .+ - 0 (111-3:
i-m r-a

NRe aU - )Zý a- 1 +- + A a1a 6 + H01aa6 } (111-3

or a r -rz 01rz a r Coi ur}
Re LV iji -" + %, a oiQ,,i a j + oi aoji + • • " 7 7o - 0

i.s] r-&.

(111-5

(I..
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:a %ji . - - + i + _oJl - .0
ji~l r=s

(ni-6)

Point j on end surfaces, z • 0 and z m L.

N

Re a.Z{4,,,- , a + %oaa 12 kiad-. + 6oJ4 + } -,.zz,oj
i-i z-O, L

(111-7)
N

Imq .zWu ojll + %oall÷ + %oa12 + Hoa12- 60,a + zoC4d -.0 (111-8)

i-3 z-O,L

Re arz a 0 Apply Eq. (111-3) at point.

Im a rz 0 Apply Eq. (i1I-4) at point.

N

He -a " d- -z + n- + oal + - 7oi .
0W7 z-0,L

("'I-9)

N
z~- 0 oi- --ado+I + 7o•; = ~ 0 •

i S o- 1oi1.1 awO +Ld O

(III-10)

Expressions for the coefficients e and ;k are obtained by setting n m 0 in

the expressions which are given in Table I of this report (See Pg.15 J.
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J For the illustrative problem under consideration# a symetrical fictitious

L
pressure loading about the plane sa of the cylinder is applied. Consequently,

for N a 18 bands# the system of 6N equations reduces to one of 3N = •I equations

on the real and Imaginary portions of the source strengths.

A convenient form which illustrates the order of the matrix coefficients

for the source strength equations, which was used in the present problem is given

in Table V. The rove of the matrix, denoted by p, represent the expressions for

the reeal and imaginary portions of the stresses and velocities at each of the in-

dicated field points J, while the columns, denoted by q, indicate the coefficients

of the appropriate source strengths at each of the indicated source points i. The

last column represents the forcing function which is applied to the cylinder. It

should be noted that the symbols dk which appear in Table VI are defined in terms

of the dk coefficients of Table I as follow:

d ki F,,1-1

While it is not practical to list all of the numerical values of the matrix

coefficients for the illustrative problem being considered, some representative

values of these quantities for the cases q w 1 to 4 and p - 1 to 20 are given in

Table VI for the convenience of those readers who may wish to work through a

sample computation.

i
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a) Solution of the Set of Simultaneous Linear Equations on the source Strengths

0 o ,1i and Col ,

The solution of the system of the 54 linear simultaneous equations on the

real and imaginary parts of the source strength coefficients can be approached

in two ways. First# the homogeneous equations in the system can be used. to

eliminate a number of the unknowns such that the 6N system reduces to a series

of 2N systems which may then be solved on an electronic computer. This procedure

would be Justified in a large problem in vhich a system of several hundred

equations vould have to be solved. For the present problem, however, it is a

comparatively simple matter to solve the system of 54 equations directly, using

an IBM 7090 computer. The values of the source strength coefficients are given

in Table VII.
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Table VI Nuericril Values of J¶'itrix Co!fficients q - 1 to 4; p * 1 to 20.

q 2 3 4

p

1 - 19.108 + 10.552 + 3.2568 + 1.6250

2 + 3.5100 + 22.599 + 7.7992 + 2.4019

3 +.65136 + 4.6795 - 23.672 + 7.0535

4 +.23214 + 1.0294 + 5.0036 - 20.832

5 +.11003 +.41256 + 1.1664 + 5.2229

6 +.o61533 +.21305 +.48391 + 1.24o6

7 -. 068969 -. 22186 -. 42763 -. 74187

8 -. 032897 -. 091414 -. 11941 -. 063712

9 -. 0085599 -. 016324 +.0035093 +.070570

10 -. 0098308 -. 029421 -. 048797 -. 067817

u -. 0098062 -. 029349 -. o48678 -. 067653

12 -. 0097593 -. 029207 -. 048443 -. 067326

13 -. 0096882 -. o023994 -. 048090 -. 066337

14 -. 0095939 -. 028712 -. 047623 -. 066189

15 -. 0095101 -. 028362 -. 047043 -. 065384

16 -. 0097595 -. 029190 -. 048358 -. 067078

17 -. 0099396 -. 029730 -. 049253 -. 068334

18 -. 010031 -. 030002 -. 049705 -. 068963

19 -. 0016023 -. 00.45155 -. 0066488 -. 0077498

20 -. 00o46601 -. 013163 -. 020737 -. 026749

!.
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Table VII - Source Strength Coefficients*

Source Point
2-WO (102) (10?(1 3) (03

I u - 17,11U 37.887 - 1.7202 + .16903 + .o401314 + .00011319

2 - 16.741 31.727 - 1.3930 + ,13424 - .043571 + .0012951

3 - 14.030 24.860 - 1.2899 + .11856 + .12250 + .0039739

4 - 9.1095 38.316 - 1.3449 + .11274 - .27677 + .0089387

5 - 2.9858 17.601 - 1.2055 + .082023 + .43680 + .019710

6 8.2628 36.282 - .74770 + .028792 - .81265 .0048730

7 . 45.238 7.0447 - .65266 + .2629o - .93899 - 413509

8 - 47.•08 24.673 - 1,0528 + .39733 - .782o4 -. 0o518o6

9 - 5o.463 28.362 . 1.2582 + .4365o - .088151 - .025014

i
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d) Evaluation of the Fluid Preosure Field.

The complex pressure and velocity components at field points in the fluid

are evaluated from the relations

N
Ica [.$ r m e a m\ .m \

p0 1 L' PfW a oiyoji +Coi7oji2 (;i 0 7,0jj - CoijVOj} (]I2

*oP j . z 0 [. oji•: "- "rBoi~ojt,/ - I (Ci~irji + Boi~oji)] (l-3
i-1

-oj- 0 (%yzi- -"~oji -"I(oni+Bioj)

The coefficients 7 ;oJi and their space derivatives are evaluated from

Eqs. (A°l)-(A-38) of Appendix A of this paper where R is the distance between

the source point i and the field point j in the acoustic fluid at which the

pressure and/or velocities are being computed.

I R R
The quantity X- a Is given by Eq. (A-4) where p --2 coa sin and

R0 represents the distance from the field point j at which the pressure is being

evaluated# to a reference point 0 which for convenience is located at the center

L
of the cylinder, i.e. at the point 0 defined by the coordinates r - 0 and z -

rig (111-3).

The far field pressures in the fluid, i.e. the pressures at distances R

which are large multiples of the cylinder dimensions, are of practical interest.

A simplified asymptotic expression for the fluid pressure, p 0 3 In the far field,

was derived in Reference (1] in terms of the fluid source strength coefficients

Coi and a prescribed distance and slope angle, R and t respectively, as shown

in Fig. (111-3). For the awdsymmetrical loading and geometry of the present
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problem, the asymptotic value of the far field fluid pressure is given by the

relation im R

Po;•" a ) f Csi Jo (k3; coo ()e C e a a o (111-15)

It should be noted that once the pressure p o0 has been evaluated from Fj. (111-15)

for a given point Pj on the ray specified by Ro and , , it can easily be evaluated

for any other point on the ray by changing the scale factor

ia) Ro
0

c
0a

0

since the quantity in the bracket will be a constant for a given ray. The use

of Eq. (111-15) in the evaluation of the far field fluid pressure greatly

simplifies the computation which would be required if Eq. (111-12) were to be

used, since it eliminate* the necessity for the numerical computation of the

7oji integral coefficients for each field point j in the fluid.

A simple formula for the evaluation of the absolute value of the pressure

p0,4 in the far field is given by the relation

X ik3; in RcL- LCol r R J (k 3; coe L) F- (111-16)
1-1j C 0 [Rj

where R refers to some reference point on the ray under consideration and R.

refers to the field point on the ray at which the pressure is to be evaluated.

For points which are closer to the cylinder so that the asymptotic formula for

the fluid pressure cannot be used, the absolute value of the pressure p0o, is

given by the relation,
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Numerical computations for the absolute value of the prcasure Poj have

been carried out along rays ranging from 00(220)900 as shown in Figs. (111-4)

and (111-5). In each figure, the lines of constant pressure in the fluid are

shown. The results which are plotted have all been derived using Eq. (111-17)

and checked, beyond Ro a 20a, by Eq. (111-16). For the benefit of those who may

wish to work through a sample computation, a representative set of numerical

values is given in Table VIII. The values of the constants CRay appearing in

Eq. (111-16) are given in Table IXo In the present example, Eq. (111-16) can

be used with good accuracy for those points for which R > 20a.

It must once again be emphasized that these numerical results may not

represent an accurate solution of this problem because too few bands were

purposely used in the computational work for the cylinder and fluid source

strength coefficients. This was done in order to present the simplest possible

numerical exanple which illustrated all the complexities of the application of

the general method. For a practical problem with a real transducer, a considerably

finer finite difference breakup would be required in order to evaluate accurate

values of the pressures in the fluid.
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Table VIII Computation for PreaGure in Fluid - Numerical Examplej
R

Ray 3s 4- 0 m,- 7.07.

* UI P 1;oil

1 .o006182 + .0019395

2 1 - .017912 + .0056330

3 -L 1 -. 027798 + .0087756
12

14 1 -. 034809 + .011021

5 1 - .038191 + .012058

6 • 1 - .037537 + .011626

7 1 - .032898 + .018512

8 1- .022015 + .031663

9 1 .oo54818 .o038822

10 1 - + .013308 + .037387

11 1 - 4+ .029733 + .026771

12 1 - ÷.03918 + .0089625

13 1 - 1 + .040008 - .0011364

14  - 1 * .037455 - .ooo62594

15 -1 o.0322149 - .00022219

16 + 1 * .024782 + .0000221490

17 + .1 0.o15590 +.o000097948

18 3192 + .000047970
+ 4 .0053192

f o@DJ o 001860 a .0014.081. 1 [.,iI - .002333 Pel.



Table IX - %ay Values [RE. 20a).

%ayq (Eq. 111-16] cay (Calculated from

Eq. (111-17) at R -20aj

0o 0.9204 0.910

25 0 0.8929 0o883

4.0o.8168 0.824

67.50 0.7559 0.788

900 0.7456 0.798

i
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IV DISCUSSION AND CONICLUSSIOT7S.

This paper is part or a study on the development of methods for treating

the forced vibrations of elastic bodies of revolution submrr•ed in an acoustic

fluid. A method. based on a potential theory approach, for the evaluation of

the pressure field in an infinite acoustic fluid due to the harmonic excitation

of an elastic circular cylindrical body of finite length has been derived In

Reference (11 and is illustrated In the presevt paper.

The illustrative example is presented for the cace of an axisymmetrical

(0 independent) excitation of the cylinder. The application of the method +o

more general excitations of the cylindrical body, vhich vary in both & and 0,

follov a similar computational pattern and are described in Part II of this

report.

The general procedures may find application in problems relating to the

response of fluid to the harmonic excitation of larCe cylindrical transducers.

In addition, the general approach is also being applied to problems involving

the evaluation of fluid pressures produced by the harmonic excitations of

submerged cylindrical shells of finite length.

I
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APPENDIX A - EVALUATION OF THE REAL AND IMAGINARY PORTIONIS OF THE COEFFICI12INT3

nji I nj~i 0 7nji AND THEIR SPACE DERIVATIVES.

For computational purposes, the complex coefficients (nj 1 O 7nD I

are written in terms of their real and imaginary parts, e.g.

%LjI "j i + I kjI (A-l)

The following nomenclature which Is similar to that used in Appendix B

of Reference (1) for the case n a 0, is used in this Appendix:

R - 2 + P2 + r 2 - 2r; coo (A-2)

21 1 " 1,2,3 (A-3)

X u k R - j(l-)2 + D + 0 2 -p cos fli (A-4)

where

-and (A-5)

Specific equations for the coefficients ;n , I anji and their space

derivatives will be given in the Appendix. The corresponding expressions

for the coefficients 0nJI and 7nji and their derivatives are obtained by

replacing L 2 or o r3 M C (for y respectively

in the equations which follow.

I.
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Rea Part9nit of Coefficient %t, and Derivatives

S" -X " coo t n* (A-6)

0

0

T 003(-|,1, nos-,. (A-8)

0

'i~ - f1 [11(,1+(p cor t)04(*)] corn n, d, (A-7)

0

"1 cos )l* d* (A-0)

0

, o J (3( comn ° d", (A-9)nj 2-. J 1(*)+(0o'nCos(aVt 2(*))]coon n* d A-

0

"n "(*) .,_()2 co. (Ac13)

0
An .' 1- 1/ I:tlle,~tl(0-4 co, n1t 11 d* .t (A-12)

uj w 2*)o
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... 2

rji coo c ooo o )P2 •)'(t-I) (p- @o5 ( or. n*t d (A-l4)
0

vhere

X sin X + Vp, X (+-co)

x3

x5() 
(A-16)

!(156X2)coe X + C15-X2) X s (A-lT)

3 X
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For the case I - 3, I.e. where the field points and the source points lie

on the same band, special formulas are required for the computation of %nt 0

Ontl 0 7nii and their space derivatives. The reader is referred to Appendix C

of Reference (1] for the derivation of these expressions for the case n - 0.

The corresponding formulas for n o 0 are given below.

X siS rcos x __n(____(_IS

I 2x* -XcoosD*coo a 2Fl80

amnii "fip-i Cos P) l(t) cos n* ) j on surfaces z-O,L

0

2 4cg P#)cos n*r d* + 3 on surface rue,

0

nl 3 j on surfaces zaO,L (A-20)

0 4 on surface rua

X
.2 r RIP + coo #)~ 2 () cs *d+

117~~ coos *d

+ X& - ,,)s on surface rua (A-21)

2 -a
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3 coo T
Elf~. rt~ coon nir dir + X. . .-. 2 on surfaces zmOpL (A-22)

2-

- .1.~ 3on suarfacesn zmOL (A-23)

- 0 3 on all surfaces (A-214)

L3-u*r 0 on .&U surfaces (A-25)

,L.rlz 5 cor onP()03 ~ ~, afl surface$ (A-26)

f P



Imaginary Part qnji of Coefficient an and Derivatives.

c) For all combinations of i and J.

S sin X coon* d* 
A-27)

nji - x
0

or i,35

-nji 2f(x -) f (co ) co o ni di (A-28)
0

p-

"nj~ N-

at nj (ý 1 (i) + (=1_2 2(*) ] co o n * dr (A-31)

a - [1-i F2e(,) (1-li) F3(t)J corn n, di A-2

0

a-rz ai5 w -
at ni = ' (* co+nt _)(21 2(*) coo ni di (A-33)

0

a *j ;2(it) + (g-1)3;(*- ' corn ut) d*l) '~ i i (A-324)

0



"3 a'jo [((p co, ,) F2 (,) + (t-c)o(p.p co, ,) C3(,)I cos n* d, (A-35)
0

vhere
" 1 +X 2  4 x < m6

[xcosx-.sinx] .(A-36)

1 2 + x2 x4

(A-37)

(3-X2) sin x - 3X cos x

and

• ~ X X4.÷ , .. x< 1.0

(A.38)

(6W2- 15) sin x + (15 - 12) x cos X

The quantities ahni. and 7ntt and their derivatives do not contain an

infinite discontinuity in their integrands at the value defined by R - 0.

Consequently# Eqs. (A-27)-(A-35) may be evaluated directly and there is no

need for special formulas as in the case of the real (single barred) components.

!
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APPENDIX 3 - DIARAWMATIC S ¥UM Y OF COMPUTATIONS.

The necessary computations for tUe evaluation of the pressure field in

the fluid due to the time harmonic excitation of an elastic cylindrical

body of finite length are summarized in rigs. (B-i) to (B-3). The computations

are conveniently broken into three basic blocks as shown in the diagrams.

The order of computatinns can, if necessaryp be reorganized in accordance with

the specific requirements of the particular electronic computer being used.

!1
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FIG. B-2 - DIAGRAMMATIC SUV•KRY - BLOCK II.

Computation for unknown source
Strengths Coni , Gen a•tnr Lni

Comcute uccressivnlyfor p w 1, 2, --- 8N
I

Io

Compute suceessively
for q o, 2, --- 8N

Compute dk and dk an a
coefficients of unknown mource
strengths for xarhe matrix as

they appear in Table V

ii

End successive incremof pI
End successive incremetn

of q

I
This computation results in a coefficient matrix'1

of 8N x 8N terms, with column matrix P nq"

I
Solve for C ni I G i I H i I Lni

by a suitable program for the
solution of simultaneous equations.l

.This computation results in 8N unknowns

C n i 0 C n i I an ni I Hni , Hni I Lni I ni

a -
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FIG. B-3 - DIAGI-ALATIC SUI,.ARY - BLOCK III.

Computation for pr~ecures I
P at field points J

Compute buccessively 1
for 1 -, 2,--- F

Compute successively
for I a 1, 2, --- N

iCompute Pnj ei

Very far field

(Asymptotic) fnoeooediate field

Compute pnj by i oComute p.m bypt
Equation 111"15i Equation 111-17 I

I

SEnd successive
incrementing of

incrementing of j

Thie computation Yields pressures
at field points j along one ray.
Computation may be repeated along
other rays as desired..
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